
Global well-posedness and backward uniqueness of
stochastic 3D Burgers equation in L2(T3;R3)

Guoli Zhou

With Zdzislaw.Brzezniak, Zhao Dong and Shijia Zhang

Tianjin University

2023.7.05

G.L. Zhou (Chongqing University) stochastic 3D Burgers equation 2023.7.5 1 / 28



Outline

1 Introduction and main results to stochastic 3D Burgers equation (BE)

2 Local well-posedness of random 3D BE (5)
Local well-posedness of difference equation (6)
Local well-posedness of random 3D BE (5)

3 Global well-posedness of random 3D BE (5)
Local well-posedness of a regularization of 3D BE (7)
Global well-posedness of the regularization of 3D BE (7)
Global well-posedness of random 3D BE (5)
Backward uniqueness of the solutions to random 3D BE (5)

G.L. Zhou (Chongqing University) stochastic 3D Burgers equation 2023.7.5 2 / 28



Outline

1 Introduction and main results to stochastic 3D Burgers equation (BE)

2 Local well-posedness of random 3D BE (5)
Local well-posedness of difference equation (6)
Local well-posedness of random 3D BE (5)

3 Global well-posedness of random 3D BE (5)
Local well-posedness of a regularization of 3D BE (7)
Global well-posedness of the regularization of 3D BE (7)
Global well-posedness of random 3D BE (5)
Backward uniqueness of the solutions to random 3D BE (5)

G.L. Zhou (Chongqing University) stochastic 3D Burgers equation 2023.7.5 3 / 28



3D Burgers equation

Let T3 = R3/2πZ3 be the 3-dimensional torus, 3D BE refers to the following equation:{
du(t)−∆u(t)dt + (u · ∇u)(t)dt = 0, on [0,T ]× T3,
u(0, x) = u0, x = (x1, x2, x3) ∈ T3.

Known results:

Kiselev and Ladyzhenskaya (1957, [5]) : global well-posedness for 3D BE in
L∞([0,T ]; L∞(O)) ∩ L2([0,T ]; H1

0 (O)).

Robinson, Rodrigo, and Sadowski (2016, [7]): the global well-posedness of weak solution
in H1/2(T3) of 3D deterministic BE, but the global well-posedness in L2(T3) is unknown .
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stochastic 3D Burgers equation

Let T3 = R3/2πZ3 be the 3-dimensional torus, consider stochastic 3D BE,{
du(t)−∆u(t)dt + (u · ∇u)(t)dt = u(t) ◦ bdB(t) + dw(t), on [0,T ]× T3,
u(0, x) = u0, x = (x1, x2, x3) ∈ T3.

(1)

where: B(t) is 1-dim BM; b ∈ R; w(t) =
∑

k∈Z3 λk exp(ix · k)B̃k(t), B̃k(t) is 3-dim BM.

Known results :

Brzezniak, Goldys, Neklyudov (2014, [1]) : the global existence and uniqueness of mild
solutions in Lp(T3) and Lp(R3), p > 3, for the stochastic 3D BE with additive noise.

Dong, Guo, Wu, Zhou (2023, [3, 4]) : the global well-posedness and ergodicity of weak

solutions in H
1
2 (T3) for the stochastic 3D BE with linear multiplicative noise.

Our aim : Global well-posedness of stochastic 3D BE (1) in L2(T3).

Our answer : (1) is solved with u0 ∈ L2(T3) replaced with uω0 ∈ L2(T3)a.s., dw replaced with F.
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The model and assumptions

That is, we consider{
du(t)−∆u(t)dt + (u · ∇u)(t)dt = F(t)dt + u(t) ◦ bdB(t), on [0,T ]× T3,
u(0, x) = uω0 ∈ L2(T3), x = (x1, x2, x3) ∈ T3.

(2)

where uω0 =
∑

k∈Z3 rk(ω)û0,k exp(ik · x), u0 =
∑

k∈Z3 û0,k exp(ik · x).

Note that uω0 has the same regularity of u0 ∈ L2(T3). That is, uω0 ∈ L2(T3), a.s., but not
uω0 ∈ Hσ(T3), for some σ > 0 with positive probability.

Assumptions:

1 Let {rk(ω)}k∈Z3 be a sequence of independent, 0 mean value, complex random
variables on (Ω,F ,P) such that for each k, and some positive constant C

sup
k∈Z3

E(|rk(ω)|6) ≤ C and r̄k = r−k, k ∈ Z3.

2 The external force F : [0,T ]× T3 → R3 ∈ L2([0,T ];H1(T3)).
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Main results: Global well-posedness of (2)

Theorem. (Global well-posedness of stochastic 3D BE )

Let u0 ∈ L2(T3) and uω0 be independent of (B(t))t∈[0,T ]. Under the assumptions, there ∃! u to

(2), i.e., u ∈ L∞([0,T ];L2(T3)) ∩ L4([0,T ];L6(T3)) ∩ L2([0,T ];H1,3(T3)) and satisfies :

〈u(t), η〉 = 〈uω0 , η〉−
∫ t

0
〈(Λu(s),Λη〉−

∫ t

0
〈(u·∇)u)(s), η〉ds+

∫ t

0
〈F(s), η〉ds+

∫ t

0
〈η, u(s)◦dB(s)〉,

on [0,T ], where η ∈ D(Λ2). Moreover, the backward uniqueness also holds for u.

F⇒ dw,w(t) :=
(∑

j∈N
λj exp(ix1 · j)B̃1

j (t),
∑
k∈N

λk exp(ix2 · k)B̃2
k (t),

∑
k∈Z3

λk exp(ix · k)B̃3
k (t)

)
Under assumption

∑
k∈Z3 |λk|2|k|6 <∞, we have

Theorem. (Global well-posedness of stochastic 3D BE with F ⇒ dw)

∃! u to (2), i.e., u ∈ L∞([0,T ];L2(T3))∩ L4([0,T ];L6(T3))∩ L2([0,T ];H1,3(T3)) and satisfies

〈u(t), η〉 = 〈uω0 , η〉 −
∫ t

0
〈(Λu(s),Λη〉 −

∫ t

0
〈(u · ∇)u)(s), η〉ds +

∫ t

0
〈η, u(s) ◦ dB(s)〉+ 〈w(t), η〉,

on [0,T ], where η ∈ D(Λ2). Moreover, the backward uniqueness also holds for u.
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A brief description of the route to solving (2)

Let α(t) = exp(bB(t)), t ≥ 0, and set

z0 = z0(t) = z0(t, x) =

∫ t

0

e(t−s)∆α−1(s)F(s)ds, (t, x) ∈ [0,T ]× T3, T > 0.

Let u = αṽ + αz0. Then the stochastic 3D Burgers equation (2) with random initial
value uω0 can be transformed into the following random case:

∂t ṽ(t)−∆ṽ(t) + α(t)(ṽ + z0) · ∇(ṽ + z0)(t) = 0, on (0,T ]× T3, (3)

ṽ(0) = uω0 ∈ L2(T3).

For solving (3), we decompose it into a nonlinear partial differential equation with zero

initial data (4) v(t) := ṽ(t)− e∆tuω0 and a linear part e∆tuω0 .
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A brief description of the route to solving (2)-Continued

∂tv(t)−∆v(t) + α(t)(v + z) · ∇(v + z)(t, x) = 0, on [0,T ]× T3, (4)

v(0) = 0,

where z := z(t) := z(t, uω0 ) = z0(t) + e∆tuω0 satisfies

dz(t)−∆z(t)dt = α−1dw(t), on [0,T ]× T3,

z(0) = uω0 ∈ L2(T3).

From Proposition 1, the randomization uω0 of the initial data u0 can improve the
integrability of z . Consequently, it contributes to the existence of the local solution
(v,Tω) of (4). Observing the solution ṽ of (3) satisfies:

ṽ(t) = v(t) + e∆tuω0 , t ∈ [0,Tω],

the local well-posedness of (3) is obtained. In view of the parabolic structure of (3), we
further know

ṽ(Tω) ∈ H2(T3), a.s..
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A brief description of the route to solving (2)-Continued

The next question is extending the local solution (ṽ,Tω) to being a global one. A
natural approach is to use the maximum principle. However, the maximum principle can
not be directly applied to random 3D Burgers equation (3). Hence, we introduce a
regularization system (5) which has global well-posedness.

∂tv
εn
m (t, x)−∆vεn

m (t, x)+αεn (t)(vεn
m +zεn

0,m) · ∇(vεn
m +zεn

0,m)(t, x) = 0, [0,T ]× T3,(5)

vεn
m (0, x) = ṽ(Tω) ∈ H2(T3), x = (x1, x2, x3) ∈ T3,

where αεn and zεn
0,m are smooth with respect to (t, x) ∈ [0,T ]× T3 so that the

maximum principle is available for (5). By establishing

vεn
m ⇒ ṽ uniformly on [Tω, ξ)× T3, as n, m→∞,

where ξ is the maximum existence time of ṽ, we achieve the global well-posedness of
(3), which leads to the global well-posedness of (2).
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A brief description of the route to solving (2)-Continued

local existence(
4
)

difference equation

=⇒
local well−posedness(

3
)

random 3D BE

=⇒
local well−posedness(

5
)

regularization−(3)

=⇒
global well−posedness(

5
)

regularization−(3)

=⇒
global well−posedness(

3
)

random 3D BE

=⇒
global well−posedness(

2
)

stochastic 3D BE

.
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Notations and setup

I For 1 ≤ p ≤ ∞, Lp(T3) is the Lebesgue space Lp(T3;R3) with the norm | · |p.
Whenp = 2, 〈·, ·〉 represents the inner product in L2(T3). For s ≥ 0, we introduce
an operator Λs acting on Hs (T3) which is a Sobolev space Hs (T3;R3).

I Assuming f ∈ Hs (T3) with the Fourier series and norm

f (x) =
∑
k∈Z3

f̂ke
ik·x ∈ Hs (T3), ‖f ‖Hs =

(∑
k∈Z3

(1 + |k|2s )|f̂k |2
)1/2

<∞.

I Define
Λs f (x) =

∑
k∈Z3

|k|s f̂ke ik·x ∈ L2(T3).

Obviously, Λ2 = −∆. Denote by ‖ · ‖s the seminorm |Λs · |2, then the Sobolev
norm ‖ · ‖Hs of Hs (T3) is equivalent to | · |2 + ‖ · ‖s .
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Definitions

Definition (Local weak/mild solutions to equation (4))

1 (v,Tω) is a local weak pathwise solution to (4) if there exists a positive random variable

Tω such that for almost all ω ∈ Ω, v ∈ L∞([0,Tω];H
1
2 (T3)) ∩ L2([0,Tω];H

3
2 (T3)) with

dv
dt
∈ L1([0,Tω];H−

1
2 (T3)) and for almost every t ∈ [0,Tω] and for all η ∈ H

1
2 (T3),

〈
∂tv, η

〉
+
〈

Λ
3
2 v,Λ

1
2 η
〉

+ α
〈

(v + z) · ∇(v + z), η
〉

= 0,

and

lim
t→0+

v(t) = 0, weakly in the L2(T3), a.s..

2 (v,Tω) is a local mild pathwise solution to (4) if there exists a positive random variable

Tω such that for almost all ω ∈ Ω, v ∈ L∞([0,Tω];H
1
2 (T3)) ∩ L2([0,Tω];H

3
2 (T3)) and

for t ∈ [0,Tω]

v(t) =

∫ t

0
α−1(s)e(t−s)∆

(
(v + z) · ∇(v + z)

)
(s)ds.
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Regularity of stochastic heat flow

Proposition 1

For T ∈ (0, 1] and p ≥ 1

‖z(t, uω0 )‖L6(Ω;L4([0,T ];L6(T3))) ≤ c‖u0‖L2(T3)T
1
4 + cT

1
4 ,

‖∇z(t, uω0 )‖L6(Ω;L2([0,T ];L3(T3))) ≤ c
∥∥∥û0,k

√
1− exp(−2|k|2T )

∥∥∥
l2

+ cT
1
2 ,

where c is independent of T . Consequently,

P(Sλ,T ,u0
) ≤ cλ−6

(
‖u0‖L2(T3)T

1
4 + T

1
4 + T

1
2 +

∥∥∥û0,k

√
1− exp(−2|k|2T )

∥∥∥
l2

)6
,

where both λ and c are independent of T , and

Sλ,T ,u0
= {ω ∈ Ω : ‖z(t, uω0 )‖L4([0,T ];L6(T3)) + ‖∇z(t, uω0 )‖L2([0,T ];L3(T3)) ≥ λ}.
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Local mild solutions to Difference equation (4)

Theorem.
Let uω0 ∈ L2(T3), a.s.. Then for almost all ω ∈ Ω there exists a unique local mild solution
(v,Tω) to (4). More precisely, there exists C > 0, for arbitrary T ∈ (0, 1] and event ΩT ∈ F
such that

P(ΩT ) ≥ 1− C
(
‖u0‖L2(T3)T

1
4 + T

1
4 + T

1
2 +

∥∥∥û0,k

√
1− exp(−2|k|2T )

∥∥∥
l2

)6
,

and for every ω ∈ ΩT , there exits a unique local mild solution (v,T ) to (4) belongs to

C([0,T ];H
1
2 (T3)) ∩ L2([0,T ];H

3
2 (T3)).
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Sketch proof

Proof.We will use contraction principle to prove the theorem. So, we define a map

L : v(t, x) 7→ −
∫ t

0
e(t−s)∆(α−1(s)(v(s, x) + z(s, uω0 )) · ∇(v(s, x) + z(s, uω0 )))ds.

where v ∈ X := L∞([0,T ];H
1
2 (T3)) ∩ L2([0,T ];H

3
2 (T3)) with the norm

‖f‖X = ‖f‖
L∞([0,T ];H

1
2 (T3))

+ ‖∇f‖
L2([0,T ];H

1
2 (T3))

.

For ω ∈ Sc
λ,T ,u0

and T ∈ (0, 1], we have

‖z(t, uω0 )‖L4([0,T ];L6(T3)) + ‖∇z(t, uω0 )‖L2([0,T ];L3(T3)) < λ.

For constants p and q satisfying 2
p

+ 3
q

= 3 with q ∈ ( 3
2
, 2], we have

∥∥∥∫ t

0
e(t−s)∆f(s, x)ds

∥∥∥
L∞([0,T ];H

1
2 (T3))∩L2([0,T ];H

3
2 (T3))

≤ c‖f‖Lp ([0,T ];Lq (T3)),

where the constant c is independent of T .
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Sketch proof—Continued

For v1, v2 ∈ L∞([0,T ];H
1
2 (T3)) ∩ L2([0,T ];H

3
2 (T3)), we have

‖L(vi )‖X ≤ c(λ2 + ‖v‖2
X ),

and

‖L(v1)− L(v2)‖X ≤ c‖v1 − v2‖X (λ+ ‖v1‖X + ‖v2‖X ),

where c is independent of λ and T . Then on Xλ := {f ∈ X : ‖f‖X ≤ 2cλ2}, there exists λ
satisfying

cλ2 + c(2cλ2)2 ≤ 2cλ2 and cλ+ 2c(2cλ2) ≤
3

4
.

which implies L satisfies the contraction principle on Xλ. Hence, the local existence of mild
solution v follows. Note that

P(Sc
λ, 1

n
,u0

) ↑ 1, as n ↑ ∞,

the result is proven.

G.L. Zhou (Chongqing University) stochastic 3D Burgers equation 2023.7.5 18 / 28



Local weak solutions to difference equation (4) and
random 3D BE (3)

Lemma. (Local weak solutions to difference equation (4))

The existence of local mild solutions and local weak solutions to (4) are equivalent.

Note that ṽ = v + e∆tuω0 , where v is a local weak solution to (4). Since

v ∈ L∞([0,Tω];H
1
2 (T3)) ∩ L2([0,Tω];H

3
2 (T3))

and e∆tuω0 ∈ L∞([0,Tω];L2(T3)) ∩ L4([0,Tω];L6(T3)) ∩ L2([0,Tω];H1,3(T3)),

we get
ṽ ∈ L∞([0,Tω];L2(T3)) ∩ L4([0,Tω];L6(T3)) ∩ L2([0,Tω];H1,3(T3))

and

Theorem. (Local weak solutions to random 3D Burgers equation (3))

For u0 ∈ L2(T3), then there exists a unique local weak solution (ṽ,Tω) to (3) a.s..
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Steps to establish the global well-posedness of random 3D
BE in L2(T3)

Step 1: Establishing a regularization system (7) of random 3D Burgers equation and obtaining its
local existence of classical solutions .

Step 2: Applying the maximum principle to the regularization system (7) to obtain the a priori
estimates, which implies the global existence of the classical solutions.

Step 3: Proving the solutions to (7) converge to (3) uniformly to establish the global existence and
uniqueness of the weak solutions to (3) in L2(T3).
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Step 1: Local well-posedness of regularization system (7)

Project F(t) to Fm(t),m ∈ N

Fm(t) =
∑

k∈Z3,|k|≤m

F̂k(t) exp(ix ·k), F̂k(t)=
1

(2π)3

∫
T3

exp(ix · k)F(t, x)dx. (t, x) ∈ [0,T ]×T3.

Denote by Bεn the mollification of B, then αεn (t) := exp (Bε(t)) ∈ C∞([0,T ];R). Similarly,
define Fεn

m . Let

zεn
0,m(t, x) =

∫ t

0
e(t−s)∆(αεn )−1(s)Fεn

m (s)ds.

Obviously, zεn
0,m ∈ C∞([0,T ]× T3;R3). By technique of harmonic analysis we have∥∥∥ ∫ t

0 e(t−s)∆f(s, x)ds
∥∥∥
L∞([0,T ];H2(T3))

≤ c‖f‖L2([0,T ];H1(T3)), which implies n,m→∞, we have

|zεn
0,m − z0|L∞([0,T ];H2(T3)) → 0, |αεn (t)− α(t)|L∞([0,T ]) → 0. (6)

To prove the global existence of ṽ, we need to introduce a regularization system (7):

∂tv
εn
m (t, x)−∆vεn

m (t, x)+αεn (t)(vεn
m +zεn

0,m) · ∇(vεn
m +zεn

0,m)(t, x)=0, on [0,T ]× T3, (7)

vεn (0, x) = v0, x = (x1, x2, x3) ∈ T3.
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Step 1: Local well-posedness of regularization system (7)

Proposition. (Local strong solutions of regularization system (7))

For v0 ∈ H2(T3), there exists a unique strong solution (vεn
m ,T

0,ε
ω ) to (7) such that

vεn
m ∈ C([0,T 0,ε

ω ];H2(T3)) ∩ L2([0,T 0,ε
ω ];H3(T3)).

Let (vεn
m , ξ

εn ) be the maximum strong solution to (7). By establishing the uniform a priori

estimates for the Faedo-Galerkin approximation (vεn
m )N : for any 0 < T 1,ε

ω < T 2,ε
ω < ξε,

sup
N
‖(vεn

m )N‖H1([T
1,ε
ω ,T

2,ε
ω ];H4)

<∞, and sup
N
‖(vεn)N‖H2([T

1,ε
ω ,T

2,ε
ω ];H2)

<∞, a.s.,

Proposition. (Local classical solutions to regularization system (7))

For v0 ∈ H2(T3), the maximum strong solution (vεn
m , ξ

εn ) to (7) is classical on (0, ξεn ), i.e.,
vεn

m ∈ C 0,2((0, ξεn )× T3;R3) ∩ C 1,0((0, ξεn )× T3;R3).
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Step 2: Global well-posedness of regularization system (7)

Proposition. (Global existence of solutions to system (7) )

The maximum solution (vεn
m , ξ

εn ) with v0 ∈ H2(T3) satisfies the a priori estimates

sup
n,m∈N

sup
t∈[0,ξεn∧T )

|vεn
m (t)|L∞(T3) ≤ C(‖v0‖H2(T3), |α

−1|L∞([0,T ]), |F|L2([0,T ];H1(T3))) <∞ ,

which implies the strong solution vεn
m is global.

Proof.
The global existence proof of vεn

m based on the a priori estimates.

1

2
∂t‖vεn

m ‖2
1 + ‖vεn

m ‖2
2 ≤ |vεn

m + zεn
0,m|L∞(T3)‖v

εn
m + zεn

0,m‖1‖vεn
m ‖2.

By the Gronwall inequality,

sup
n,m∈N

sup
t∈[0,ξεn∧T )

(
‖vεn

m (t)‖2
1+

∫ t

0

‖vεn
m (s)‖2

2ds
)

≤ C(‖v0‖H2(T3), |α
−1|L∞([0,T ]), |F|L2([0,T ];H1(T3))) := C(v0,F, α)

Similarly, one can prove

sup
n,m∈N

sup
t∈[0,ξεn∧T )

‖vεn
m (t)‖2

2 ≤ C(v0,F, α) <∞.⇒ ξεn =∞, a.s..
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Step 3: Global well-posedness of random 3D BE (5)

Proposition. (Global well-posedness of random 3D BE (3))

Let uω0 ∈ L2(T3) . Then, the maximum weak solution (ṽ, ξ) to (3) is global.

Proof. Consider random 3D BE (3) and regularization system (7) on [Tω, ξ) with
vεn

m (Tω) = ṽ(Tω) ∈ H2(T3). Define wεn
m = vεn

m − ṽ. Then, on [Tω, ξ), we have

∂tw
εn
m − ∆wεn

m + [αεn − α](vεn
m + zεn

0 ) · ∇(vεn
m + zεn

0,m)

+ α[wεn
m + (zεn

0,m − z0)] · ∇(vεn
m + zεn

0,m) + α(ṽ + z0) · ∇[wεn
m + (zεn

0,m − z0)] = 0.

By showing that

sup
t∈[Tω,ξ)

‖wεn
m (t)‖2

2I{ξ<∞} → 0, as n, m→∞, a.s..

we get

sup
t∈[Tω,ξ)

|ṽ(t)|L∞(T3)I{ξ<∞} < C(ω) <∞, a.s.. =⇒ ξ =∞, a.s..
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Backward uniqueness of the solutions to random 3D BE

Theorem. (Backward uniqueness of random 3D BE)

Suppose ṽ1 and ṽ2 are two weak solutions to (3) with random initial conditions uω1 ∈ L2(T3)
and uω2 ∈ L2(T3) respectively. Then for T > 0,

if ṽ1(T ) = ṽ2(T ), we have ṽ1(t) = ṽ2(t) for t ∈ [0,T ], a.s.. (8)

Proof. Let ṽ1 and ṽ2 be two solutions to (3). Denote by v := ṽ1 − ṽ2, then we get

log |v (T )|22 ≥ −2K (T − t0)− 2C (K + 1)

∫ T

t0

||M(τ)||2L(H1,L2) dτ + log |v (t0)|22 ,

where||M(s)||2L(H1,L2) = ||ṽ1(s)||2H2 + ||ṽ2(s)||2H2 + ‖z0(s)‖2
H2 . If|v (T )|22 = 0, then |v (t0)|22 = 0

for arbitrary t0 ∈ (0,T ). And v(0) = 0 is derived from the weak continuity of the weak solutions

to (3).
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Many thanks for attention!
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